MICROWAVE TUBES
Microwave tubes perform the same functions of generation and amplification in the microwave portion of the frequency spectrum that vacuum tubes perform at lower frequencies. This section will explain the basic operation of the most widely used microwave tubes, including klystrons, traveling-wave tubes, backward-wave oscillators, magnetrons, and crossed-field amplifiers. The variations of these tubes for use in specific applications are so numerous that all of them cannot be discussed in this module. However, general principles of operation are similar in all of the variations so the explanations will be restricted to the general principles of operation.
The Basic Two-Cavity Klystron KlystronsThe basic of two cavity klystrons are velocity-modulated tubes that are used in radar and communications equipment as oscillators and amplifiers. Klystrons make use of the transit-time effect by varying the velocity of an electron beam in much the same manner as the previously discussed velocity-modulation process. Strong electrostatic fields are necessary in the klystron for efficient operation. This is necessary because the interaction of the signal and the electron beam takes place in a very short distance. The construction and essential components of a TWO-CAVITY KLYSTRON are shown in figure 2-7A. Figure 2-7B is a schematic representation of the same tube. When the tube is energized, the cathode emits electrons which are focused into a beam by a low positive voltage on the control grid. The beam is then accelerated by a very high positive dc potential that is applied in equal amplitude to both the accelerator grid and the buncher grids. The buncher grids are connected to a cavity resonator that superimposes an ac potential on the dc voltage. Ac potentials are produced by oscillations within the cavity that begin spontaneously when the tube is energized. The initial oscillations are caused by random fields and circuit imbalances that are present when the circuit is energized. The oscillations within the cavity produce an oscillating electrostatic field between the buncher grids that is at the same frequency as the natural frequency of the cavity. The direction of the field changes with the frequency of the cavity. These changes alternately accelerate and decelerate the electrons of the beam passing through the grids. The area beyond the buncher grids is called the DRIFT SPACE. The electrons form bunches in this area when the accelerated electrons overtake the decelerated electrons.
Figure 2-7A.—Functional and schematic diagram of a two-cavity klystron.
Figure 2-7B.—Functional and schematic diagram of a two-cavity klystron.
The function of the CATCHER GRIDS is to absorb energy from the electron beam. The catcher grids are placed along the beam at a point where the bunches are fully formed. The location is determined by the transit time of the bunches at the natural resonant frequency of the cavities (the resonant frequency of the catcher cavity is the same as the buncher cavity). The location is chosen because maximum energy transfer to the output (catcher) cavity occurs when the electrostatic field is of the correct polarity to slow down the electron bunches. The two-cavity klystron in figure 2-7A and B may be used either as an oscillator or an amplifier. The configuration shown in the figure is correct for oscillator operation. The feedback path provides energy of the proper delay and phase relationship to sustain oscillations. A signal applied at the buncher grids will be amplified if the feedback path is removed.
Q-1. What is the basic principle of operation of a klystron?
Q-2. The electrons in the beam of a klystron are speeded up by a high dc potential applied to what elements?
Q-3. The two-cavity klystron uses what cavity as an output cavity?
Q-4. A two-cavity klystron without a feedback path will operate as what type of circuit?
The Multicavity Power Klystron
Klystron amplification, power output, and efficiency can be greatly improved by the addition of intermediate cavities between the input and output cavities of the basic klystron. Additional cavities serve to velocity-modulate the electron beam and produce an increase in the energy available at the output. Since all intermediate cavities in a multicavity klystron operate in the same manner, a representative THREE-CAVITY KLYSTRON will be discussed. A three-cavity klystron is illustrated in figure 2-8. The entire DRIFT-TUBE ASSEMBLY, the three CAVITIES, and the COLLECTOR PLATE of the three-cavity klystron are operated at ground potential for reasons of safety. The electron beam is formed and accelerated toward the drift tube by a large negative pulse applied to the cathode. MAGNETIC FOCUS COILS are placed around the drift tube to keep the electrons in a tight beam and away from the side walls of the tube. The focus of the beam is also aided by the concave shape of the cathode in high-powered klystrons
Figure 2-8.—Three-cavity klystron
The output of any klystron (regardless of the number of cavities used) is developed by velocity modulation of the electron beam. The electrons that are accelerated by the cathode pulse are acted upon by rf fields developed across the input and middle cavities. Some electrons are accelerated, some are decelerated, and some are unaffected. Electron reaction depends on the amplitude and polarity of the fields across the cavities when the electrons pass the cavity gaps. During the time the electrons are traveling through the drift space between the cavities, the accelerated electrons overtake the decelerated electrons to form bunches. As a result, bunches of electrons arrive at the output cavity at the proper instant during each cycle of the rf field and deliver energy to the output cavity. Only a small degree of bunching takes place within the electron beam during the interval of travel from the input cavity to the middle cavity. The amount of bunching is sufficient, however, to cause oscillations within the middle cavity and to maintain a large oscillating voltage across the input gap. Most of the velocity modulation produced in the three-cavity klystron is caused by the voltage across the input gap of the middle cavity. The high voltage across the gap causes the bunching process to proceed rapidly in the drift space between the middle cavity and the output cavity. The electron bunches cross the gap of the output cavity when the gap voltage is at maximum negative. Maximum energy transfer from the electron beam to the output cavity occurs under these conditions. The energy given up by the electrons is the kinetic energy that was originally absorbed from the cathode pulse. Klystron amplifiers have been built with as many as five intermediate cavities in addition to the input and output cavities. The effect of the intermediate cavities is to improve the electron bunching process which improves amplifier gain. The overall efficiency of the tube is also improved to a lesser extent. Adding more cavities is roughly the same as adding more stages to a conventional amplifier. The overall amplifier gain is increased and the overall bandwidth is reduced if all the stages are tuned to the same frequency. The same effect occurs with multicavity klystron tuning. A klystron amplifier tube will deliver high gain and a narrow bandwidth if all the cavities are tuned to the same frequency. This method of tuning is called SYNCHRONOUS TUNING. If the cavities are tuned to slightly different frequencies, the gain of the amplifier will be reduced but the bandwidth will be appreciably increased. This method of tuning is called STAGGERED TUNING.
Q-1. How is the electron beam of a three-cavity klystron accelerated toward the drift tube?
Q-2. Which cavity of a three-cavity klystron causes most of the velocity modulation? Q-18. In a multicavity klystron, tuning all the cavities to the same frequency has what effect on the bandwidth of the tube?
Q-3. The cavities of a multicavity klystron are tuned to slightly different frequencies in what method of tuning?
The Reflex Klystron
Another tube based on velocity modulation, and used to generate microwave energy, is the REFLEX KLYSTRON (figure 2-9). The reflex klystron contains a REFLECTOR PLATE, referred to as the REPELLER, instead of the output cavity used in other types of klystrons. The electron beam is modulated as it was in the other types of klystrons by passing it through an oscillating resonant cavity, but here the similarity ends. The feedback required to maintain oscillations within the cavity is obtained by reversing the beam and sending it back through the cavity. The electrons in the beam are velocity-modulated before the beam passes through the cavity the second time and will give up the energy required to maintain oscillations. The electron beam is turned around by a negatively charged electrode that repels the beam. This negative element is the repeller mentioned earlier. This type of klystron oscillator is called a reflex klystron because of the reflex action of the electron beam
Figure 2-9.—Functional diagram of a reflex klystron.
Three power sources are required for reflex klystron operation: (1) filament power, (2) positive resonator voltage (often referred to as beam voltage) used to accelerate the electrons through the grid gap of the resonant cavity, and (3) negative repeller voltage used to turn the electron beam around. The electrons are focused into a beam by the electrostatic fields set up by the resonator potential (B+) in the body of the tube. Note in figure 2-9 that the resonator potential is common to the resonator cavity, the accelerating grid, and the entire body of the tube. The resonator potential also causes the resonant cavity to begin oscillating at its natural frequency when the tube is energized. These oscillations cause an electrostatic field across the grid gap of the cavity that changes direction at the frequency of the cavity. The changing electrostatic field affects the electrons in the beam as they pass through the grid gap. Some are accelerated and some are decelerated, depending upon the polarity of the electrostatic field as they pass through the gap. Figure 2-10, view (A), illustrates the three possible ways an electron can be affected as it passes through the gap (velocity increasing, decreasing, or remaining constant). Since the resonant cavity is oscillating, the grid potential is an alternating voltage that causes the electrostatic field between the grids to follow a sine-wave curve as shown in figure 2-10, view (B). As a result, the velocity of the electrons passing through the gap is affected uniformly as a function of that sine wave. The amount of velocity change is dependent on the strength and polarity of the grid voltage.
2-10.—Electron bunching diagram.
The variation in grid voltage causes the electrons to enter the space between the grid and the repeller at various velocities. For example, in figure 2-10, views (A) and (B), the electrons at times 1 and 2 are speeded up as they pass through the grid. At time 3, the field is passing through zero and the electron is unaffected. At times 4 and 5, the grid field is reversed; the electrons give up energy because their velocity is reduced as they pass through the grids. The distance the electrons travel in the space separating the grid and the repeller depends upon their velocity. Those moving at slower velocities, such as the electron at time 4, move only a short distance from the grid before being affected by the repeller voltage. When this happens, the electron is forced by the repeller voltage to stop, reverse direction, and return toward the grid. The electrons moving at higher velocities travel further beyond the grid before reversing direction because they have greater momentum. If the repeller voltage is set at the correct value, the electrons will form a bunch around the constant-speed electrons. The electrons will then return to the grid gap at the instant the electrostatic field is at the correct polarity to cause maximum deceleration of the bunch. This action is also illustrated in figure 2-10, view (A). When the grid field provides maximum deceleration, the returning electrons release maximum energy to the grid field which is in phase with cavity current. Thus, the returning electrons supply the regenerative feedback required to maintain cavity oscillations. The constant-speed electrons must remain in the reflecting field space for a minimum time of 3/4 cycle of the grid field for maximum energy transfer. The period of time the electrons remain in the repeller field is determined by the amount of negative repeller voltage. The reflex klystron will continue to oscillate if the electrons remain in the repeller field longer than 3/4 cycle (as long as the electrons return to the grid gap when the field is of the proper polarity to decelerate the electrons). Figure 2-11 shows the effect of the repeller field on the electron bunch for 3/4 cycle and for 1 3/4 cycles. Although not shown in the figure, the constant-velocity electrons may remain in the repeller field for any number of cycles over the minimum 3/4 cycle. If the electrons remain in the field for longer than 3/4 cycle, the difference in electron transit time causes the tube performance characteristics to change. The differences in operating characteristics are identified by MODES OF OPERATION.
2-11.—Bunching action of a reflex klystron.
The reflex klystron operates in a different mode for each additional cycle that the electrons remain in the repeller field. Mode 1 is obtained when the repeller voltage produces an electron transit time of 3/4 cycle. Additional modes follow in sequence. Mode 2 has an electron transit time of 1 3/4 cycles; mode 3 has an electron transit time of 2 3/4 cycles; etc. The physical design of the tube limits the number of modes possible in practical applications. A range of four modes of operation are normally available. The actual mode used (1 3/4 cycles through 4 3/4 cycles, 2 3/4 cycles through 6 3/4 cycles, etc.) depends upon the application. The choice of mode is determined by the difference in power available from each mode and the band of frequencies over which the circuit can be tuned.